Sampling Method Questions
1) Define the following: (20 percentage points)
a) Why is data classified by Histogram?
b) What is the importance of Dot procedure for classifying data?
c) What is a “population” in statistics?
d) What is a sample?
e) What is the common sampling method?
f) What is the central tendency called?
g) What observation basically describes a sample size?
f) What is the measure of dispersion called?
i) Sample mean or the population mean: which varies the most?
J) Sample mean and individual observation: which varies the most?
2) Calculate the variance and standard deviation from the following data (30 percentage points):
Herd 1
510
490
550
450
525
475
Rule: If A and B are two events that may result from a single repetition of a random process, the probability that A and B or both will occur is the probability of A plus the probability of B minus the probability that both A and B occur.
3a) What is the probability that one card selected from a deck of 52 cards will be a spade or number card or both? (10 percentage points).
Rule: Given two events A and B, the probability of joint occurrence is the product of the probability of A and conditional probability of B given that A has occurred, or the probability of B multiplied by the conditional probability of A given that B has occurred.
A container contains 3 white balls and 5 black balls. Draw two in a row without replacement.
3b) What is the probability of black on first draw and white on second? (10 percentage points).
Rule: The Poisson probability distribution describes the number of times some event occurs during a specified interval. The interval may be time, distance, area, or volume.
4) Suppose 1.5 percent of the new Nokia cell phones are defective. For a random sample of 200 antennas, find the probability that: (10 percentage points).
- None of the antennas is defective
- Three or more of the antennas are defective
Rule: Repeated Independent Trial-Random Process:
A is one of the possible outcomes. The probability of A remains constant from one trial to the next. Repeated trials are independent (probability that in n trials, A occurs exactly r times).
5) A pair of die is rolled 5 times, what is the probability of 3 sevens? Describe the magnitude of the calculated probability (20 percentage points).
Bonus) An investment will be worth $1000, $2000, or $5000 at the end of the year. The probabilities of these values are .25, .60, .15, respectively. Determine the mean and variance of the worth of the investment (5 percentage points).